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Various researchers have suggested concepts that measures computational complexity of
mathematical objects; for example, polynomial time Turing reducibility, Kolmogorov com-
plexity, circuit complexity, and so on. However, we still have a variety of mathematical
objects whose nature of computational complexity is unknown.
Arithmetical forcing was introduced by Feferman [5] soon after Cohen’s independence

proof of the continuum hypothesis. Since Hinman’s work [6], arithmetical forcing has been
studied in recursion theory. Later, arithmetical forcing and its variations were used as tools
to study P = ?NP question by some people. Typical examples are Dowd [4], Ambos-Spies
et al. [1], Poizat [8] and Blum and Impagliazzo [3].
In this thesis, by extending the work of Dowd [4] and Poizat [8], we introduce the concept

of forcing complexity . The forcing complexity of an arithmetical predicate for a given oracle
means the minimal size of a finite portion of the oracle that forces the predicate. By using
forcing complexity, we study the inner structure of coNP [A] with respect to “almost all”
oracles. In particular, we investigate computational complexity of TAUT [A] and rTAUT [A]:
these are sets of Boolean formulas with query symbols. There are two approaches to formalize
the concept of “almost all” oracles. The one is a probabilistic formalization (we consider a
subset of the Cantor space contains almost all oracles if it has Lebesgue measure one), and
the other is a topological formalization (we consider a subset contains almost all oracles if
it is comeager). This thesis is based on [9, 10, 11].

• Basic Concepts •
An oracle Turing machine is an algorithm that can utilize external information. Intu-

itively speaking, an oracle Turing machine is obtained by allowing a programmer to use
special flow control statements of the following form.

if u belongs to the oracle /* ⇐ this line is called a “query.” */
then . . . ; else . . . ;

end-if /* u is a bit string. */

A set of bit strings, called an oracle, is fixed previously to the computation of a given
oracle Turing machine. We denote the set of all bit strings by {0, 1}∗. We identify a given
oracle with its characteristic function. Thus, an oracle is a function from {0, 1}∗ to {0, 1}.
Each recursive function is computed by a Turing machine; likewise, for a given oracle A, each
function recursive in A is computed by an oracle Turing machine with the oracle A. Now,
let n be a natural number. According to [4], we introduce an n-ary connective ξn. Roughly
speaking, ξn(q1, . . . , qn) asserts that the bit string q1 · · · qn belongs to the oracle that we are
considering. More formally, for each oracle A, we introduce an n-ary Boolean function An.
As an example, we explain the case where n = 3. First, we consider {0, 1}3, i.e. the set of all
bit strings of lengths 3, and {0, 1}∗. On these sets, we introduce lexicographic order, where
shorter strings have priority and λ denotes the empty bit string.

{0, 1}3 : 000, 001, 010, 011, 100, 101, 110, 111.
{0, 1}∗ : λ, 0, 1, 00, 01, 10, 11, 000, . . .
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Then, let Str(3) be {λ, . . . , 000}, i.e. the set of the first 23 = 8 elements of {0, 1}∗. We define
the function A3 so that the following diagram commutes, where ' denotes the isomorphism
with respect to the lexicographic order.

A3

{0, 1}3 −−→ {0, 1}
'
y % A ¹ Str(3)

Str(3)

For a given oracle A, we interpret ξ3(q1, q2, q3) as A
3(q1q2q3). This rather obscure definition

of An is forced on us because we want that the information contained in An be preserved in
An+1, and also because a predicate in a tautology must have a definite number of arguments.
The relativized propositional calculus is an extension of the propositional calculus. We get
the former by adding a countable set {ξn : n ≥ 1} of connectives to the latter. For each oracle
A, TAUT [A] denotes the collection of all (binary representations of) relativized formulas that
are tautologies with respect to A. Suppose that r is a positive integer. A relativized formula
is called an r-query formula if it has just r-many occurrences of additional connectives. For
each positive integer r, rTAUT [A] denotes the collection of all (binary representations of)
r-query formulas that are tautologies with respect to A. Each member of rTAUT [A] is called
an r-query tautology with respect to A.

• Methodological Features •
(1) Forcing complexity. A finite portion of an oracle is called a forcing condition.

Let X(∼) be a unary predicate symbol denoting membership to a given oracle and y be a
variable for a bit string. Assume that ϕ(X)(y) is an arithmetical predicate (or, a functional)
which is finitely testable (= test fini: see [8]). We say “a forcing condition S forces ϕ(X)(u),”
where u is a given bit string, if ϕ(A)(u) holds for any oracle A that is an extension of S. Now,
assume that A is an oracle. The forcing complexity of ϕ(X)(y) relative to A is a function
f : N → N such that for each natural number n, f(n) is the least number k ∈ N of the
following property: for any bit string u of length n, if ϕ(A)(u) is true then A has a finite
portion S of size at most k such that S forces ϕ(X)(u): in other words, the cardinality of
dom(S) is at most k and for any oracle B extending S, ϕ(B)(u) is true. If f is the forcing
complexity of ϕ(X)(y) relative to A and n is a natural number, the value f(n) is called the
forcing complexity of ϕ(X)(y) relative to A at n, which is denoted by the following:

FC(ϕ(X)(y), A, n).

We present applications of forcing complexity to the study of complexity of Turing machines.
The results (a) and (b) in the following are shown by using forcing complexity.

(2) Application of forcing to deterministic algorithms. Dowd [4, Theorem 11]
used forcing methods for controlling a nondeterministic Turing machine. We use forcing
methods not only for controlling a nondeterministic Turing machine but also for controlling
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the execution time of a while-loop of a deterministic Turing machine, by which we clarify
the relationship between the r-query tautologies and fundamental problems in the theory of
computational complexity. The result (c) in the following is shown by using this method.

• Main Results •
(a) Clear-cut new proofs of previous results. We present an explicit example of

a coNP [X]-predicate ϕ(X)(y) with the following property: for each oracle A and for each
positive integer n, a lower bound for its forcing complexity is (uniformly) given as follows.

FC(ϕ(X)(y), A, n) ≥ 2
n−1 − n+ 1

n
.

By this example, we give a simpler alternative proof of Dowd’s result that t-generic oracles
do not exist. We also present a clear-cut proof of Dowd’s result that the set of all r-generic
oracles has Lebesgue measure one, by investigating oracles’ hierarchy with respect to forcing
complexity.

(b) Results on Cohen-Feferman generic oracles. It is a classical result that the
set {X : P [X] 6= NP [X]} is comeager in the Cantor space ([7], [8], [3] and [4]). We consider
oracles whose forcing complexity is small. By investigating how existence of such oracles
affects behavior of a Cohen-Feferman generic oracle, we improve the above classical result.
That is, for each positive integer r, we show that the following set is comeager in the Cantor
space.

{X : coNP [X] * NP [rTAUT [X]]}.
(c) Control of while-loops by a forcing method. Bennet and Gill [2] showed:

“The set {X : TAUT [X] /∈ P [X]} has Lebesgue measure one in the Cantor space.” We con-
sider the problem whether the statement of the above fact remains true when we substitute
rTAUT [A] for TAUT [A]. For each positive integer r and for each r-generic oracle A (in
Dowd’s sense), we show the following formula:

rTAUT [A]≡PT TAUT ⊕A.

The above formula is shown by constructing a deterministic algorithm whose while-loop’s
execution time is controlled by a forcing method. Consequently, we have that the following
two assertions are equivalent, where R is a well-known complexity class such that P ⊆ R ⊆
NP .

(1) The set {X : rTAUT [X] /∈ P [X]} has Lebesgue measure one in the Cantor space.
(2) The unrelativized classes R and NP are not identical.
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