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(oracle Turing machine) ,

) )

if u belongs to the oracle /* < . x/
then ... ;else ... ;
end-if /*u L */
(oracle) . {0,1}*
{0,1}* {0,1} . recursive functions
, , A recursive
functions . , ,
, (forcing condition)
) gn * A )
n- AN . , A3 . ,
3 {0,13*  {0,1}* ,( ) : A
{0,1}®: 000, 001, 010, 011, 100, 101, 110, 111.
{0,1}*: ), 0, 1, 00, 01, 10, 11, 000,
,{0,1}* 8 {A,...,000}  Str(3)
A3 . ,
A3
0.1 — {01}
~ l AL Str(3)
Str(3)
A , (a1, q2,33)  A%(q19243)
; (1) ) fn(q1,---,Qn) :£n+1(07q17"'7qn) gn £n+1
, (2) ; ;
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3 Tautology-generic oracle

NP =?coNP , [Do 92]

Dowd Theorem 8 [Do 92, Theorem 8] Suppose that M[~] is a nondeterministic oracle

machine such that for every oracle A, we have Lang(M[A]) = TAUT[A]. Then for no A, the

language TAUT[A] is accepted in polynomial time. o
, Dowd
Dowd Lemma 7 [Do 92, Lemma 7] Tautology-generic oracles do not exist. o)

, Dowd Lemma 7
MX M[X] . N {01} . A
sparse ) D , n , Card(AN{0,1}=") < p(n)

1 [Do 92, Lemma 6]

Lemma If a deterministic polynomial time oracle machine M* accepts all its inputs
with respect to a t-generic oracle G, then it is forced to do so by a sparse set of queries.
That is, there is a partial function Y from N to {0, 1} satisfying Y C G whose domain

is sparse, which forces VoM™ (z).

Proof. The relativized formula asserting that “on all inputs of length < n the machine
M accepts” is a tautology with respect to the oracle G for every n, and its length is
bounded by a polynomial in n. Therefore the nth is forced by a set W}, of queries to G
of size polynomial in n. Let W = [J{W, : n is a power of 2}. Then W is sparse, and

forces the statement. <]

1 ( ) Suppose that p is a polynomial, and that for each positive integer n, Dy is a subset
of {0,1}=P(M such that Card(Dyn) < p(n). Let D = |J{Dn : n is a power of 2}. Then D is sparse.

o]

1 [Su99b] For each natural number n > 2, let k(n) be the largest natural number k such that
2k*1 _ 1 < n. For each n, let Dp = {0,1}=KM_ Let D = |J{Dn, : n is a power of 2}. Then, for
each n > 2, Dy, is a subset of {0,1}=" and Card(Dy,) is at most n. However, we have D = {0, 1}*.

o]

[Su 99b] , [Su 99¢] ) Dowd Lemma



. o(X)(y) . , (X)(y)  finitely testable (= test fini, [Po 86]

) . u ;S p(X)(w) (force) , S
A , o(A4)(w) , . LA ,f:N—=N
n s f(n) k ;
f o A (forcing complexity) , n f(n)

n u 5 p(A)(u) , A S
) k S e(X)(w)
1 [Su 99¢] There exists a finitely testable arithemtical predicate ¢(X)(y) such that the

following two requirements are satisfied.

1. (X)(y) is uniformly coNP[X]. In other words, there exists a polynomial-time computable
function f such that for every oracle A and for every bit string u, we have ¢(A)(u) if and only
if f(u) € TAUT[A].

2. For every oracle A and for every positive integer n, a lower bound for the forcing complexity
is given as follows.

-1 _n41

FC(p(X)(y), Am) = ——

Dowd Lemma 7 1

4 r-Dowd oracle

Dowd , Theorem 8

Dowd Theorem 11 [Do 92, Theorem 11] If NP = coNP then there exists a nondeterministic

oracle machine M |[~] which satisfies the following two requirements.

1. For every oracle A, we have Lang(M[A]) = TAUT[A].
2. For every positive integer r and for every r-Dowd oracle D, M[D] accepts every member of
rTAUT[D] in polynomial time. o

Dowd Theorem 11

)

Dowd Theorem 10 [Do 92, Theorem 10] For any integer r, the class of all »-Dowd oracles

has Lebesgue measure one in Cantor space. o)



Dowd , RPC

) > 2
, . , 2-query formula
£(0,0,1) & £%(1,0,0)
A A A3(001)
A3(100) . , A(0) = A(01)
0 1 . ,
So := {(0,0),(01,0)}, S1:={(0,1),(01,1)}
[Su 99¢] ,Dowd  Theorem 10
, -Dowd oracle , rDO3 . , F € rTAUT[X]
rTAUT(X)(F) . rDO3 , rTAUT(X)(F) A
A . [Su
99c] ,r>2 , disentangled r-query formula . ,
r-query formula , . , "TAUT(X)(F)
, F X disentangled r-query tautology
T‘DOZ . 5 TDOz 5
5 5 T‘DO]_
, Diagram 2
Diagram 2. ( )
2DO; O 3DO; D---
U U
2D0O, O 3DO, D---
U U
1DO3; D 2D0O3 O 3DO3 D---
disentangled r-query formula , RPC
interpolation , 2 . interpolation

[Do 92] ,Q=H tautology



, RPC I , Q=1 I=H

2 [Su99c|] In Diagram 2, each vertical hierarchy collapses. Thus, we get Diagram 3.

Diagram 3. ( )

2D0O, 3DO;

I I
2D0, 3DO,

| [
1DO; D 2D0O3 O 3DO3z D---

, disentangled r-query tautology ( )
, ( ) . , Dowd
one-Dowd oracle , r>2 , rDO¢
, Dowd Theorem 10

, , disentangled r-query formula , rDO;

1 [Su99c] Suppose that r and n are positive integers such that we have r > 2. A triple
d = (¢, B, f) is called an (r,n)-disentangled matrix if the following three requirements are satisfied.

The set of all (r,n)-disentangled matrices is denoted by DEM(r, n).

1. t is a positive integer such that log,r <t < min{n,r(r —1)/2}.

2. B is a matrix of type (r,t) such that each element is 0 or 1 and such that rows are pairwise
different.

3. f:{1,---,t} = {1,...,n} is an order preserving mapping; we shall often denote f by the
sequence (f(1),..., f(t)). o

2 [Su99c| Suppose that r is a positive integer such that r > 2.

1. Suppose n is a positive integer and § = (¢, B, f) is an (r,n)-disentangled matrix. For i =
1,...,r, we define a set Str(n, d,7) as follows. Str(n,d,%) is the collection of all bit strings z(m)
such that we have z(2" —1+m) € {0,1}" and such that, letting z(2" —1+m) = ug - - - un, the
bit string wf(1yus(e) - - - Ur(r) is identical with the ith row of the matrix B. For a given query

free formula H, we define é(r,n, H) as follows. First, we temporarily introduce a formula F



as follows.

.
F=get. “( /\(a(') &g, .., qﬁ')))) = H”
i=1
We define §(r,n, H) by the following substitution, where each b}i) denotes the (4, j)-component

of the matrix B.
8(r,n, Hy=qer. FI0 /q80] - 682 /a0y
[bjii)/q](j()j)] ...
15 /aly) - 168 Jaf).
2. Assume that F' is a relativized formula. We call F' a disentangled r-query formula if F' is of
the form 6(r,n, H), where n is a natural number, § is an (r,n)-disentangled matrix and H is a

query free formula. If F' is a disentangled r-query formula and F is a tautology with respect

to an oracle A, then we call F' a disentangled r-query tautology with respect to A. <]

2 (disentangled 3-query formula ) We consieder the case where r = 3 and n = 4. Suppose

H is a query free formula. Let § = (¢, B, f), where t = 2, f = (2,3) and B is the following matrix.
1 0
B:=10 1
11

Then, §(r,n, H) is given as follows.
1 1
((a(l) & 4e0,1,0,47)) A

2 2
(@@ & 4(¢®,0,1,¢2)) A

3 3
(@@ & (¢,1,1,¢7)) = &

o
2 f B - {o
{2(0),...,2(2* = 1)} ( , k4 2(k)
) {al0d : a,d € {0,1}} Str(4,4,1) . , *01x
Str(4, §,2), *11x* Str(4, 4, 3) . 6(r,n, H) ,
(Str(4,4,1), Str(4,4,2), Str(4,4,3))
o

, disentangled r-query tautology ( )

; ( ) : ;

10



Dowd Lemma 9 [Su 99¢| (see also [Do 92, Lemma 9]) Suppose that r and n are
positive integers such that » > 2. Suppose § € DEM(r,n) and suppose that H is a query free

formula and E is a set of bit strings satisfying the following inclusion.
Str(n,d,2) 4+ - -- + Str(n,d,r) C E C Str(n) \ Str(n,d,1).

Let Ag be a forcing condition whose domain is F. Assume that F=qer. 6(r,n, H) is a disentangled
r-query tautology with respect to some oracle extending Ag. Then, there exists a forcing condition
S such that dom(S7) C Str(n,d,1) and such that for any forcing condition 77 whose domain is a

subset of Str(n,d, 1), the following two assertions are equivalent.

1. S]_ CT7.
2. Ty + Ag forces F.

Such a forcing condition S; is uniquely determined only by the disentangled r-query formula F
and the forcing condition Ag. And, for any oracle A extending Ao, if F' is a tautology with respect

to A then A is an extension of S1. (Because, letting T1=ger. A * Str(n, d,1), T1 + Ag forces F.) ©

A rDOy , , A disentangled
r-query tautology F :=§(r,n,H)
E 3 Sl (F ) 5 3
Ag AlE
5 CcoNP[G] - G
Diagram 3

, , rDO (r=1,2,3...) . ,

tautology-generic oracle tDO ,C  Cantor . Dowd Lemma
7 Dowd  Theorem 10 , r C % rDO % tDO =10
. Diagram 3 ,

3 [Su99d] (Fragility of 2-Dowd property) For every one-Dowd oracle D, there exists a

one-Dowd oracle E such that E is polynomial-time one-one equivalent to D and F is not 2-Dowd.

o]

, p-time one-one degree  one-Dowd , 2-Dowd

y T 3 ’

Diagram 4. ( )

C % 1DO % 2DO 2 rDO % tDO =10

11



Diagram 4 , Diagram 1 A G

)

4 ([Su 99b] [Su99d]) For every generic oracle G, we have Diagram 5, where r is an

arbitrary natural number such that r > 3.

Diagram 5. (coNP[G] ; G )

TAUT @ G <% 1TAUT[G] <} 2TAUTI[G] <% »TAUT[G] <% TAUTI[G]

(padding argument, [BDG 95] ) [BGS 75] finite extension method

, 5 . 4 | Diagram 4 5
) LA , ©(X)(y) finitely testable
- p(A)(u) u ; l4]

plA] == {u € {0,1}" : p(A)(v)}-

, A celing-generic oracle ,A ©

5 [Su99b] Suppose that o(X)(y) and ¥(X)(y) are finitely testable arithmetical predicates
and G is an oracle. Suppose that for every oracle A, if A(u) = G1(u) for all but finitely many bit
strings u, then the following three hypothesisses hold.

(H. 1) A is ceiling-generic for ¢(X)(y).
(H. 2) A is ceiling-generic for —p(X)(y).
(H. 3) A is not ceiling-generic for ¢(X)(y).

Then, for every generic oracle G2, we have the following.

PG| & NP[p[G]].

o
, F € 1TAUT[X] o(X)(F) , A
, p[A] = 1TAUT[A] . ) o(X)(F) ceiling-generic oracle one-Dowd
oracle , o(X)(F) ceiling-generic oracle 1DO
, , Diagram 4 Diagram 5
5 , Diagram 4 % , Diagram 5
<

12



6 CcoNP[A] C A
Diagram 1

6 [Su 98] Suppose that r is a positive integer and D is an r-Dowd oracle. Then, we have

TAUT & D =% rTAUT[D). o

, one-query formula ,

, , while-loop
,r=1 .r>2 , RPC )
trade-off
6 Dowd Theorem 10 Kurtz [Kur 83] , A
, 1 Diagram 6 . , r 3
Diagram 6. (coNP[A4] ; A )

TAUT @ A =7 1TAUT[A] =} 2TAUT[A] =F rTAUT[A] <} TAUTI[A]

, Dowd Theorem 11 , : , one-Dowd oracle
D 1TAUT[D] ¢ NP[D] , NP = coNP (unrelativized) . ,
, . 6
, Dowd Theorem 11 . R
, .PCRCNP
. R , PRIMES ([BDG 95] ).

7 [Su 98] Suppose r is a positive integer. Then, the following two assertions are equivalent.

e The following class has Lebesgue measure one:

{X : The pT-degree of rTAUT|[X] is strictly higher than that of X}

e R # NP (unrelativized). o

8 [Su99d] If there exists a one-Dowd oracle D such that the p-tt-degree of 1T TAUT|[D] is
strictly higher than that of D, then we have P # NP. o

7 One-query-jump hypothesis
, G omne-generic oracle , [Jo 80].

@O@GET GO.

13



1TAUT[0] @ D =% 1TAUT|D]

, jump-operator  one-query operator ( , \X. 1ITAUT|[X))

One-query-jump hypothesis for <x.

P P
) SX ST Stt

<x one-query-jump hypothesis

(concept of reducibility)

)

“The class of all oracles A of the following property

has Lebesgue measure one: the X-degree of 1T AUT|[A] is strictly higher than the X-degree of A.”

Diagram 7
<t

P
Sm

Diagram 8

hypothesis

(p-time one-one reducibility) ,
(p-time many-one reducibility) ,
(p-time disjunctive reducibility) ,

(p-time conjunctive reducibility) ,

(p-time one-truth-table reducibility) ,

(p-time truth-table reducibility)

, [LLS 75]
B 5 Ang ASY B

Diagram 7. (Reducibilities)

<q
a N\
<L - <5 - <5 - <BE - <
N\ a
<T_w

one-query jump hypothesisses
3 [SX]

SX ) [SX]

. [Prime] ~ PRIMES NP

14

<x < <y

[Prime]

one-query-jump



Diagram 8. (one-query-jump hypothesisses)

<]
e N
R e e e R
N < lo
(<] P # NP R # NP
O g
[Prime]
n @ 7 8 @ @
([BDG 95, § 6.1] Rabin ).
Diagram 8 , ZFC
9 [Su99d] One-query-jump hypothesis for p-time disjunctive reducibility is a theorem of

ZFC. One-query-jump hypothesis for p-time one-truth-table reducibility is a theorem of ZFC, too.

Thus, we have Diagram 9, where F [<x] denotes that the one-query-jump hypothesis for <y is a

theorem of ZFC.

0
7A2

generic oracle

Diagram 9. (one-query-jump hypothesisses)

<]
<] FI<R) <] « <R o« [
I 1
F <l P # NP R # NP
N A
[Prime]
o
one-Dowd oracle
Cantor . ,
one-Dowd oracle
one-generic oracle , 29 one-generic oracle . , one-
. Dowd

15



one-Dowd oracle

10 [Su99d] There exists a one-Dowd oracle D such that D is primitive recursive. o
s , optimal

11 [Su 99d] (Ubiquity of one-Dowd oracles) Every Turing degree contains a one-Dowd

oracle. a

10

Construction: , Cantor
, 1DO K
) kE ¢ ) p(z) = 2K+ ¢ one-Dowd
K . , one-query formlas ( Form )

( ) . n , ™ m) n one-query

formula Formn,

Form = U Formp,.

neN
n , requirement Rp
Rn: S {2(0),...,2(2" ") }(= Str(n))
, F € 1TAUT[X] N Formp, on(X)(F) , S
¢n p(IF)
A , n A1Str(n)  requirement Rp
,Ae K
, S requirement Rp , S
Ri,...,Rn_1 , S survives at n , , Rn
requirement R:,
R:,: S n survivors , (
, n survivor )
n requirement R:, ,
, injury : ,ym<mn , n survivor
, m survivor , S
n , S survives at n ;S T , T survives at n+ 1
, [Do 92] Dowd  Theorem 10
,n , S survives at n S
) ; K . D

16



Verification: D one-Dowd

b
Formp, requirement Ry,

»Rn . )

11 . 1DO
, 10
perfect tree

perfect tree (perfect set

A “survivor tree”  branch
, “survivor tree” ( node )
Turing-degree (
). , 11
, 29 one-Dowd oracle
; : P /poly

12 [Su 99d]

n , Formp, ,

requirement Rp
n survivor

, 10

Borel , perfect subset
, survivor
[Je 78] ). ,
branch  one-Dowd oracle
, [Ta 73]
, 2F (= NP)

Nomne of the following complexity classes contains a one-Dowd oracle: P, NP,

coNP, BPP, P /poly. a
Diagram 10, 11, 12, A9 one-Dowd oracle . ,
C1 — Cs C1 C O, s 01—>7502 C1$Cs C+ ( c-
) C  one-Dowd oracle (one-Dowd oracle ) , C¢
( c ) C  one-generic oracle (one-generic oracle )

. PH , PrRec

Diagram 10. (Higher levels)

9
Sz
PrRec+ —z X3+

e
9

17
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Diagram 11. (Middle levels)
A5 - ¥fnnf — PH — PSPACE —= PrRect

e
BPP- —= P/poly—

Diagram 12. (Lower levels)

R- — NP-
A hV hV

P— BPP— AP
hV S A

coR— — coNP—

RPC

M ) M . M
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